Surfing I Handout

Glossary:
Kook- YOU; an inexperienced surfer, will come to mean anyone but you and your friends.
Ding- Damaged area on a surfboard.
Black Ball flag- non-surfing area
Regular foot- Left foot forward on board
Goofy- right foot forward on board
Close out/Walled up- Waves that break all at once
Mushy- weaker waves that break or crumble slowly
Section-specific area of a breaking wave
Left- From the water looking at the beach wave breaks to a surfer’s left.
Right- From the water looking at the beach wave breaks to surfer’s right.
Dories/Foam boards/ BZ’s- all beginner soft boards
On shore- wind that is blowing off the ocean toward land (bad).
Off shore- wind blowing from the land out to sea. (Good)
Blown out- Caused by too much wind often occurs mid-day.
Dawn patrol - surfing in the early morning.
Swells- open ocean waves originating from storm.
Waves-what happens to a swell as it encounter shallower water and breaks.
Beach break - sand bar just off shore of a beach.
Reef break- Shallow reef off shore
Point break- a protruding section of shore that causes waves to break,

Tides: LA has two high and two low tides every day. There is a low/low, high/low, high/high and a low/high. Knowing the tides can help you decide where and when to surf. Beach breaks generally work better at a high tide. Sand bars found at the beach breaks will breaks in nice peaky waves if the water is deep enough around them. As the tide gets lower, the peak of the wave will expand into a wall and close out the section of wave. Reef breaks generally work better at low tides; the sit offshore, surrounded by deep water and as the tide goes down the reef gets closer to the surface and a swell that would have passed by during a high tide hits the reef and breaks. The lower the water goes the more powerful the break will become.

Wind: The suns energy heats the ocean unevenly creating wind. When wind becomes powerful and prolonged a storm occurs. The longer a storm is at sea the more energy will be created on the surface of the ocean. As the wind continues ripples are created on the surface over time these
ripple become open ocean swells. When these swells hit land they are formed into waves where their shape is dictated by the topography of the ocean floor.

Surf and Rip Currents:
Porpoises can ride the wake of a ship indefinitely. Boaters too can enjoy a free ride by positioning a small boat on the forward face of the first large wave in a ship's wake. In a similar way, surfboards are propelled down the surface of a wave by taking energy from the wave.

The following diagram shows the forces involved in surfing. In effect, the surfer slips down the moving front of the wave under the influence of gravity. Correctly positioned and moving with the direction of the wave, the surfer travels at the speed of the wave crest. By traversing the face of the wave, the surfer may move even faster than the wave. The trick is to catch the wave as it passes so that the gravitational force on the board is greater than the resistance of the water. Ideally after a few strong strokes the surfer is propelled by the wave's energy.

When a surfer passes through a wave, the circular motion of the water particles produces a brief downward pull. This is only of short and is not dangerous in itself, but surfers close to shore may be thrown and deposited (not always lightly) on the beach.

Visitors to the beach are sometimes puzzled by the variation of breakers on a beach, even over a short time. On any given day a dozen or so moderate to small size waves will break followed by a group of larger waves, followed by a period of relative calm. This irregular sequence is caused primarily by the simultaneous arrival of several swells from separate storms at sea. Larger waves form when the waves of separate groups merge and reinforce one another. Smaller waves form when the incoming waves are out of phase and interfere with one another. The resulting patterns produce a beat frequency called surf beat, which is much longer than the period of the individual waves. Surf beat of two or three minutes may occur when wave periods are between 10 and 14 seconds. When surf beat occurs, longer waves strike the beach and the water level is raised.

Waves at the edge of the sea are often associated with what is called “undertow.” Actually, there is no real undertow that draws or sucks swimmers under. There are however, rip currents, these are dangerous currents in the surf zone with water moving away from shore that occur whenever currents funnel through a narrow opening formed by the erosion of a channel or gap across the lowest part of an offshore sandbar.
Rip currents may move up to 2 m.p.h. They are localized and their position changes according to the sometimes dynamic wave conditions. The higher the waves the stronger the rip current. If you are ever caught in a rip current you should swim parallel to the beach till out of the current as opposed to swimming against it. A rip current is narrow and you will soon be out of it. If you tire, look for a sand bar where you can rest. Foaming light colored water is usually a sign of a sandbar.

Breaking Waves:

Waves breaking on the coast of California and Oregon may have formed near Antarctica and traveled for two weeks across the Pacific, about half way around the globe, before finally spending themselves on the coast. Waves hitting the Californian coast may also have formed north of Hawaii or any place in the north or south pacific along a great circle route. In the winter waves tend to come from the North Pacific. During summer they are likely to have come from the South Pacific. Waves travel long distances encountering little friction; decay of swell energy is minimal.

Because depth decreases toward the beach, waves travel from deep water to shallow water waves as they approach the shore. As the leading waves interact with the shallow bottom, the incoming waves crowd more closely together because their speed is proportional to depth. If the crests are 100m apart, the waves “feel bottom” at 50m (1/2 their wavelength). The speed of the waves then decreases causing their wavelength to decrease. Succeeding waves tend to pile up as the orbiting water particles are squeezed together. The orbital velocity of the molecules at the trough, but not at the crest is reduced. The wave becomes more and more unstable, and the ratio of height to wave length becomes greater than one to seven. At this point the crest of the wave moves faster than the trough, and it curls over at the top. Just before breaking, the orbital velocity at the crest may be twice the speed of the wave. At last the wave topples, and the water breaks into foam and surf.

Another way to explain the growth of shallow water waves involves the transfer of energy from one form to another. As the wave speed decreases, the wave’s kinetic energy decreases. In accordance with the law of conversation of energy, that energy appears as potential energy, which is proportional to height.

There is no clear cut transition from a deep water wave to a shallow water wave. The transformation is gradual, growing more pronounced closer and closer to shore. A shallow water wave begins to break at a depth equal to about $1/20^{th}$ of its wavelength, or when the depth is $1 1/3$ times its height. For instance, a wave 3m high will break at a depth of 4m; a 6m wave will break at a depth of 8m.

If you know the approximate slope and depth of a beach at various distances from shore, you can estimate the height of a wave at each distance. Walk toward the water’s edge until the
crest of the breakers is aligned with the horizon. The height of the next wave will equal the
vertical distance from your eye level to the lowest level of the retreating water from the last wave.

Breaking waves are of two types: spillers and plungers. Spillers roll in evenly and slow
(slow and mushy). Plungers break over a short distance, pounding the beach with a great roar and
splash of flying water and foam (fast and hollow). Spillers give surfers the longest rides.
Although winds are currents have an effects on whether a swell becomes a spiller or a plunger,
(onshore winds produce spillers, offshore winds produce plungers) the main influence is the
bottom topography. The steeper the bottom slope, the more quickly the wave will slow down and
break. The composition or roughness of the bottom is also a factor, although its effects are not as
pronounced as that of the slope. A smooth, step slope tends to produce slow mushy waves. The
slope and the texture of a beach are affected by the endless bombardment of the waves and the
release of large amounts of energy. There breakers hitting the shore produce the highest energy
environment on earth. Moreover, since weather conditions vary daily, the type of breakers found
at any given beach is not constant.

Before the Allies undertook amphibious landings during WWII, the beach slopes were
carefully studied. How close could landing craft come to the beach to dispatch thousands of men
and their supplies? Aerial photography of the beaches and the offshore waters provided the
answers. On the basis of the decreasing wavelength as waves approached the shore, specialists
determined the depths and drew up slope profiles of the beaches.

Refraction, Diffraction and Reflection

When waves approach the shore, they undergo refraction, diffraction, and reflection.

Deep water waves entering shallow regions at an angle to the bottom contours are bent as
they touch bottom. This refraction is caused by the reduction of wavelength as depth decreases.
The part of the crest entering shallow water first moves more slowly the part of the waves still in
deep water, and the wave front bends to fit the shore. As a result, the wave is almost parallel to
the shore when it breaks numerous refraction patterns are possible, depending on the angle at
which the wave approaches and on the bottom topography and tide height.

Diffraction

accounts for the presence of waves in sheltered regions, such as harbors. Like light waves, water
waves may be bent into shadow zones behind steep sided obstacles. Diffracted waves in a harbor
or inside a breakwater are smaller and choppy. Diffraction patterns observed from the air leeward
of Pacific atolls often extend for several kilometers. Early Polynesian mariners interpreted these
choppy waters as a sign that they were approaching an atoll. Since an atoll lies so low in the
water, it can not be seen from a canoe or outrigger more than 10km away. A vertical or nearly
vertical sea wall or cliff situated in deep water may reflect a wave train (swell) with little energy
loss. The reflected waves exert very little force on the wall under certain conditions. This
phenomenon appears as a standing wave which occurs in the waves strike the wall
perpendicularly. If they strike at an n angle other than 90 degrees, waves of equal and opposite
angles are formed. The original waves are the reflected waves may interfere with each other, in
which case their crest and troughs will cancel out, or they may reinforce each other. It is often
difficult to tell which waves are coming and which are going.

I. Brief Overview of the Class
A. Meets four times over two weeks for two hours
B. Is designed for people with little to no surfing experience
C. Uses foam dories only
D. End goals: to have the skills and confidence necessary to continue surfing safely at a beginners beach

II. Give Geography of beach area
 A. Start with picture or drawing of the surf zone
 1. beach/shore
 2. white water/inside
 3. Impact zone
 4. rollers/outside
 Beware and types of breaks
 1. Beach
 2. Reef
 3. Point
 4. How waves form and break (stars/ wind power/ depth)
 a. fast/hollow
 b. slow/mushy
 c. what’s best for beginners

 C. Currents, what they look like and how to escape
 1. rip/paddle sideways (bottom couture)
 2. Long shore \ exit the water or paddle against (swell direction

 C. Anatomy of a Wave
 1. Face
 2. shoulder
 3. tube
 4. Impact zone
 5. lip

 C. Critter and what to do
 1. sting rays/ stingray shuffle/ hot water 45 minutes
 2. Jelly fish/ no problem
 3. Jaws / what jaws

III Parts of a Surfboard
 A. nose
 B. rails
 C. tail
 D. fins
 E. stringer
 F. bottom
 G. deck
 H. rocker
 I. sweet spot
 J. differences in length
 K. differences in thickness
L. Hard vs. soft
M. Leash
N. Wetsuits (how they work)

IV. Entering the water
A. Keep positive control of your board
B. Always move into the water on with other surfers not in line
C. Keep board perpendicular to wave action
D. Shuffle out to white water
E. Get out about waste deep
F. Jump on sweet paddle spot of board
G. Choose safe route
H. Paddle to outside
I. Turn turtle or push up through waves
J. Stop after impact zone
K. Sit facing ocean and wait for wave

V. Catching a wave
A. Spot your wave
B. Estimate speed, direction and distance (becomes automatic)
C. Turn
D. Paddle while in the sweet spot of board
E. Paddle Hard and make sure you have caught the wave before standing up (take 2 extra strokes)
F. Look around to make sure you are not cutting anyone off
G. As you feel yourself accelerating down the wave POP UP
 1. Arch back and push up with hands next to waist
 2. Twist at the hips and front shoulder
 3. Bring lead foot and knee underneath body front foot contacts first at a 45 degree angle to stringer
 4. Back foot 90 degrees to stringer of fins. This is where you turn from
 5. Rock weight onto both feet.
 6. Keep knees bent
 7. Attempt to trim board along wave face

VI. When you bail
1. Attempt to fall lightly back onto the board
2. Or cover and protect your head as you fall
3. Let body relax
4. Fall parallel to water
5. Come up from beneath the water surface slowly with hand above your head to establish the board is not above your head.
6. Look around to make sure there are not other surfers headed towards you and recover your board.